Here’s how to calculate standard error in Pandas.
How to calculate standard error in Pandas
To calculate a standard error in Pandas just use a sem method which Pandas is offering to you.
import pandas as pd my_df = pd.DataFrame({"my_column1": [9, 2, 3, 5], "my_column2": [3, 7, 6, 4], "my_column3": [4, 8, 8, 8]}) print(f'The standard error of columns:\n{my_df.sem()}')
The standard error of columns: my_column1 1.547848 my_column2 0.912871 my_column3 1.000000 dtype: float64
In Pandas, the sem method calculates the standard error of the mean for each column of a DataFrame or for each element in a Series. The method uses the formula mentioned above and returns the standard error of the mean for each column or element.
For more details see the documentation of sem function.
1 thought on “How to calculate standard error in Pandas”