• Reshaping Data (Pivoting and Melting)
  • Applying Functions to Data
  • Creating New Columns
  • String Manipulation
  • Handling Categorical Data

Pandas groupby(): Complete Guide with Examples

The groupby() function is one of the most powerful and frequently used methods in Pandas. It allows you to split a DataFrame into groups based on one or more columns, apply operations to each group independently, and combine the results back together. This split-apply-combine workflow is essential for data analysis, aggregation, and summarization tasks.

(more…)

Continue ReadingPandas groupby(): Complete Guide with Examples

Custom Aggregations: Using apply and map for Complex Data Transformations

Custom aggregations in Pandas, involving apply and map functions, are powerful tools for performing complex data transformations. These functions allow for more nuanced and sophisticated data analysis than what is possible with standard aggregation methods like sum, mean, etc. Here’s how they work and how they can be used for complex data transformations: (more…)

Continue ReadingCustom Aggregations: Using apply and map for Complex Data Transformations