Data validation is an essential step in any data analysis or machine learning project. It involves checking data quality, consistency, and correctness to ensure that the data is reliable and suitable for the intended analysis or modeling. Pandas provides several functions and tools for data validation, such as checking for missing values, checking for duplicates, checking data types, and more. Here are some common data validation tasks in Pandas:
Checking for missing values
Use the isna function to check for missing values in a dataframe or series, and use the sum function to count the number of missing values in each column.
import pandas as pd # create a dataframe with missing values df = pd.DataFrame({'A': [1, 2, pd.NA, 4], 'B': [5, pd.NA, pd.NA, 8]}) # check for missing values print(df.isna()) # count missing values by column print(df.isna().sum())
Checking for duplicates
Use the duplicated function to check for duplicate rows in a dataframe, and use the drop_duplicates function to remove duplicate rows.
# create a dataframe with duplicate rows df = pd.DataFrame({'A': [1, 2, 2, 3], 'B': [4, 5, 5, 6]})# check for duplicate rows print(df.duplicated()) # remove duplicate rows df.drop_duplicates(inplace=True)
Checking data types
Use the dtypes attribute to check the data types of columns in a dataframe, and use the astype function to convert columns to a specified data type.
# create a dataframe with mixed data types df = pd.DataFrame({'A': [1, 2, 3], 'B': ['4', '5', '6']})# check data types of columns print(df.dtypes) # convert column B to integer data type df['B'] = df['B'].astype(int)
Checking data range
Use the describe function to check the summary statistics of a dataframe or series, such as mean, min, max, and quartiles.
# create a dataframe with numeric data df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'B': [100, 200, 300, 400, 500]})# check summary statistics print(df.describe())
These are just a few examples of data validation tasks in Pandas. There are many more functions and tools available in Pandas and other Python libraries for various data validation tasks. Check out the pandas documentation and more resources on pandashowto.com for more information.