In Pandas, the unique() method can be used to extract unique values from a Pandas Series or DataFrame. Here are some examples:
Series
import pandas as pd
# create a Series s = pd.Series([1, 2, 3, 1, 2, 3, 4, 5]) # extract unique values unique_values = s.unique() # print unique values print(unique_values)
Output:
[1 2 3 4 5]
DataFrame
import pandas as pd # create a DataFrame df = pd.DataFrame({ 'A': [1, 2, 3, 1, 2, 3, 4, 5], 'B': ['a', 'b', 'c', 'a', 'b', 'c', 'd', 'e'] }) # extract unique values from column A unique_values_colA = df['A'].unique() # extract unique values from column B unique_values_colB = df['B'].unique() # print unique values print(unique_values_colA) print(unique_values_colB)
Output:
[1 2 3 4 5] ['a' 'b' 'c' 'd' 'e']
The unique() method returns an array of unique values in the same order as they appear in the original Series or DataFrame. It can be useful to check for unique values in a column or to filter out duplicates in a dataset.