In this post, you will learn how to replace NaN by mean in Pandas.
There are many methods to get rid of unspecified values from the dataframe. I will use the sklearn module to replace the NaN value with the average.
import pandas as pd my_data = {'Column1': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7], 'Column2': [100000000, 120000000, None, 260000000, 210000000, 80000000, 40000000]} my_df = pd.DataFrame(my_data)
How to replace nan by mean in Pandas
The SimpleImputer method allows you to replace NaN values using various strategies. Below I paste the code that replaces NaN with the average.
import pandas as pd from sklearn.impute import SimpleImputer my_data = {'Column1': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7], 'Column2': [100000000, 120000000, None, 260000000, 210000000, 80000000, 40000000]} my_df = pd.DataFrame(my_data) nan_to_mean = SimpleImputer(strategy='mean') my_df['Column2'] = nan_to_mean.fit_transform(my_df[['Column2']]) print(f'No more NaN values in my dataframe: \n {my_df}')
There are also other strategies for replacing unspecified values. Can replace NaN with:
- mean
- median
- most_frequent
- constant
You can choose the strategy that best suits your data and analysis needs.
See also:
Documentation of SimpleImputer method
Pingback: How To Replace List Of Values With One Value • Pandas How To
Pingback: How To Query A Dataframe • Pandas How To